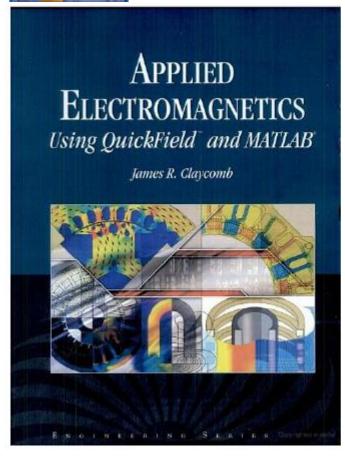
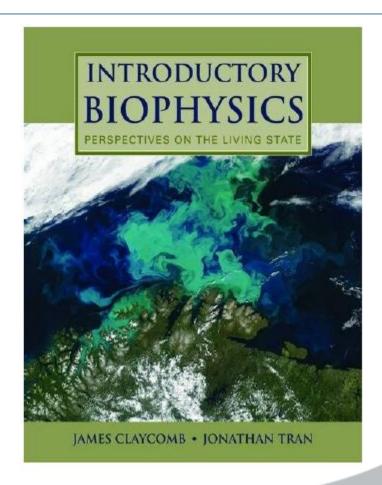


Содержание и докладчики

Немкович Андрей Сергеевич, Инженер группы поддержки пользователей




Ильина Ольга Ярославовна, Специалист группы поддержки пользователей Вопросы лицензирования, поставки и связи с пользователями

Книги профессора Джеймса Клайкомба

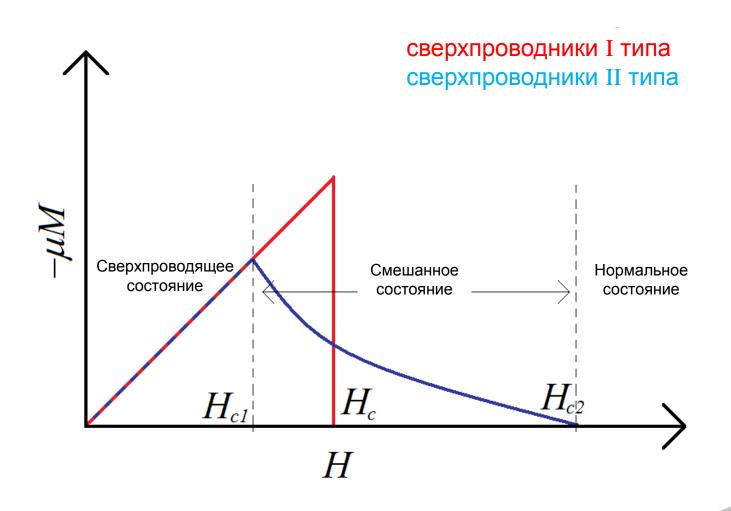
Электромагнитное экранирование

- Экраны из магнитомягких материалов (железо, мюметалл):
- ✓ осевые и поперечные поля;
- Экраны из сверхпроводников:
- ✓ осевые и поперечные поля;
- Экранированные помещения:
- ✓ однослойное экранирование (медь);
- ✓ многослойное экранирование (медь + мю-металл);
- Электромагнитные импульсы и помехи.

Экраны из магнитомягких материалов

Мю-металл — это железо-никелевый сплав (~75% никель, ~15% железо, также медь и молибден), относительная магнитная проницаемость которого лежит в пределах 10⁴ - 10⁵.

Экраны из сверхпроводников


Сверхпроводники — это материалы, обладающие рядом свойств:

- ✓ нулевое электрическое сопротивление при определенной температуре, называемой критической;
- ✓ полное вытеснение магнитного поля из объема материала (эффект Мейснера).

Экраны из сверхпроводников

Сравнение поперечных и продольных коэффициентов экранирования для магнитомягких материалов и сверхпроводников

Ослабление магнитного поля вдоль оси трубки, выполненной из магнитомягкого материала:

$$B_{axial} \propto \exp\left(-3.832 \frac{z}{a}\right)$$
 $B_{trans} \propto \exp\left(-1.84 \frac{z}{a}\right)$

Ослабление магнитного поля вдоль оси трубки, выполненной из сверхпроводящего материала:

$$B_{axial} \propto \exp\left(-2.41 \frac{z}{a}\right)$$
 $B_{trans} \propto \exp\left(-3.832 \frac{z}{a}\right)$

Экранированные помещения

Пример экранированного помещения, защищаемого от высокочастотного электромагнитного излучения.

Моделирование грозового разряда

$$I(z=0,t) = Q \frac{1}{12} \frac{1}{\tau} \left(\frac{t}{\tau}\right) \exp\left(-\left(\frac{t}{\tau}\right)^{1/2}\right)$$

Cho, M., and M. J. Rycroft (1998), Computer simulation of the electric field structure and optical emission from cloud top to the ionosphere, J. Atmos. Sol. Terr. Phys., 60, 871–888.

Temporal-spatial modeling of electron density enhancement due to successive lightning strokes

Erin H. Lay, ¹ Craig J. Rodger, ² Robert H. Holzworth, ³ Mengu Cho, ⁴ and Jeremy N. Thomas^{3,5}

Электромагнитные импульсы

Компонент	Время импульса	Образование импульса
E1	<1 мкс макс - 5 нс ½ макс -200 нс	Электроны ионизированных гамма-излучением атомов в верхних слоях атмосферы.
E2	1 мкс < 1 с	Рассеянное гамма-излучение, производимое нейронами.
E3	10 – 100 c	Восстанавливаемое поле Земли, вытесненное геомагнитными явлениями на Солнце

Спасибо за внимание!

До свидания!