П.И.Захарченко, Е.Б.Ковалев

СОПОСТАВЛЕНИЕ РАЗЛИЧНЫХ МЕТОДОВ РАСЧЕТА МАГНИТНЫХ ПОЛЕЙ

Моделирование нелинейного вихревого магнитного поля вентильного реактивного двигателя на основе расчета поля с помощью векторного магнитного потенциала и предлагаемым методом приведения вихревого магнитного поля к квазипотенциальному с расчетом магнитной системы на основе закона полного тока. Уменьшение погрешности расчета по сравнению с методом векторного магнитного потенциала.

Постановка проблемы. Вентильно-индукторные двигатели (ВИД), благодаря своей конструктивной простоте находят все большее применение в различных сферах производства. Их характеристики определяются энергией магнитного поля в воздушном зазоре, которая зависит от геометрических размеров активных частей ВИД, магнитодвижущей силы его обмоток статора и законов управления токами в обмотках статора. Поэтому для выбора оптимальной конструкции ВИД необходимо иметь картину магнитного поля.

Анализ публикаций. Как показано в [1] поле в магнитной системе двигателя содержит области потенциального поля области вихревого поля, поэтому для моделирования этого поля в [1-4] применен векторный потенциал. Анализ результатов моделирования поля показывает, что отдельные участки магнитной системы резко насыщены, максимальная индукция в зубце статора в зоне перекрытия полюсов составляет более 1,9 Тл, а минимальная – 0,5 Тл, в результате чего магнитная проницаемость μ по сечению магнитной системы изменяется в широких пределах. Однако согласно [4-6] применение векторного магнитного потенциала оправдано только для расчета магнитных полей с μ =const.

Для расчета вихревых полей при µ≠const Демирчяном [5] предложен оригинальный метод приведения вихревого магнитного поля к квазипотенциальному, позволяющий преодолеть все трудности метода векторного магнитного потенциала. Рассчитаем поле этим методом, подробно освещенным в [4].

Цель работы. Сопоставление методов моделирования магнитных полей на основе векторного потенциала и на основе приведения вихревого магнитного поля к квазипотенциальному.

Результаты исследований. * Известно (Г.А.Рязанов, 1969), [4], что

^{*} Статья написана с привлечением материалов докт. техн. наук, профессора С.В.Карася

магнитные поля линейных электрических токов и двойных магнитных слоев эквивалентны. С точки зрения расчета магнитного поля это означает, что имеется возможность один тип источников заменить другим. Способ эквивалентной замены электрических токов магнитными зарядами позволяет рассчитать поле с помощью скалярного магнитного потенциала только в зоне, расположенной вне электрических токов, но не дает возможности рассчитать поле в областях, занятых токами, т. е. там, где **rot H = J**.

Если одновременно существуют и источники, и вихри поля, то, исходя из суперпозиции полей, можно считать, что вектор напряженности **H** имеет две составляющие,

$\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2,$

из которых первая создана источниками, а вторая – вихрями. Представим истинное значение напряженности вихревого поля Н состоящим из двух составляющих: потенциальной **H**_p, создаваемой магнитными зарядами и дополнительной, имеющей напряженность **H**_o:

$$\mathbf{H} = \mathbf{H}_{\mathbf{p}} + \mathbf{H}_{\mathbf{0}}.$$
 (1)

Рассмотрим потенциальную составляющую H_p . Так как ее поле вызвано магнитными зарядами, эквивалентными исходным токам, то оно является потенциальным и связано со скалярным магнитным потенциалом соотношением

$$\mathbf{H}_{\mathbf{p}} = -\mathbf{grad}\boldsymbol{\varphi}_{\mathbf{p}}.$$
 (2)

Для потенциального поля rot $H_p = 0$. Плотность его источников можно найти согласно [7] из условия (1):

div $\mathbf{B} = \operatorname{div}(\mu_a \cdot \mathbf{H}) = \operatorname{div}(\mu_a \cdot \mathbf{H}_p + \mu_a \cdot \mathbf{H}_o) = \mathbf{0}$ или

$$\operatorname{div} \mu_{\mathbf{a}} \cdot \mathbf{H}_{\mathbf{p}} = -\operatorname{div} \mu_{\mathbf{a}} \cdot \mathbf{H}_{\mathbf{o}} = \rho , \qquad (3)$$

где р – объемная плотность магнитных зарядов.

Из (2) и (3) следует

div
$$\mu_a \operatorname{grad} \varphi_p = -\rho.$$
 (4)

Уравнения (2), (3), (4) описывают потенциальное поле расчетной величины H_p , знания которой необходимо для нахождения напряженности искомого вихревого поля **H**.

Скалярный потенциал **H**_p, в отличие от обычного скалярного магнитного потенциала, используется во всем пространстве, включая и объемы с токами. Назовем его *обобщенным скалярным магнитным потенциалом*, а магнитное поле, описываемое потенциалом, назовем квазипотенциальным магнитным полем.

Рассмотрим дополнительную составляющую поля H_o. Согласно (1) имеем

rot $H = rot H_p + rot H_o = J$.

Так как согласно (2) поле H_p является потенциальным, то rot $H_p = 0$. Тогда для сохранения равенства rot H = J необходимо, чтобы

rot $H_0 = rot H = J$.

Плотности источников дополнительного поля H_0 можно найти согласно (3):

div μ_a $H_o = -div \mu_a H_p = div \mu_a grad \phi_p = - \rho$. Для двухмерной задачи

 $\operatorname{div} \mathbf{H}_{o} = \nabla \cdot \mathbf{H}_{o} = \partial \mathbf{H}_{ox} / \partial \mathbf{x} + \partial \mathbf{H}_{oy} / \partial \mathbf{y} = -\rho.$ (5) При этом нужно учесть поверхностные источники и определяющую их поверхностную дивергенцию, равную разности нормальных составляющих вектора индукции по обе стороны поверхности

div $\mu_a \cdot H_o = -\sigma$.

Таким образом, введение вспомогательных расчетных величин H_0 , ρ и σ , определяемых из уравнений rot $H_0 = J$, $\rho = -$ div $\mu_a \cdot H_0$ и $\sigma = -$ div $\mu_a \cdot H_0$, позволяет перейти от системы уравнений

rot H = J; divB = div(μ_a ·H) = 0,

описывающей вихревое магнитное поле, к системе [4]

rot $H_p = 0$; div $\mu_a H_p = \rho$, div $\mu_a \operatorname{grad} \varphi_p = -\rho$

или div μ_a grad ϕ_p = div H_o = - ρ .

Последовательность решения задачи нахождения поля Н такова:

а) определяют поле $\mathbf{H}_{\mathbf{0}}$, подчиняющееся условию rot $\mathbf{H}_{\mathbf{0}} = \mathbf{J}$;

б) рассчитывают значение $\rho = - \operatorname{div} \mu_a \operatorname{H}_o$;

в) решают уравнение div μ_a grad ϕ_p = - ρ для скалярного магнитного потенциала;

г) вычисляют $H_p = -$ grad φ_p и определяют искомое поле $H = H_p + H_o$. Таким образом, электрические токи плотностью J заменяют магнитными зарядами плотностью ρ , а уравнения для векторов поля заменяют уравнением для скалярного потенциала φ_p .

Рассмотрим расчет плоскопараллельного магнитного поля зубцовой зоны ВИД как поле соленоида, изображенного на рисунке 1 и приведенного к квазипотенциальному при μ_a = const. Выделим в рассматриваемом магнитном поле две области: 1-я область внутри соленоида, 2-я – вне соленоида.

Вычисление искомого поля **H** связано со сложением полей \mathbf{H}_{o} **и** \mathbf{H}_{p} в области 1, где $\mathbf{H}_{o} \neq \mathbf{0}$. В области 2 имеем $\mathbf{H} = \mathbf{H}_{p}$, так как в ней $\mathbf{H}_{o} = 0$.

h_i – высота обмотки статора; hi · b – сечение обмотки; J_z – плотность тока в обмотке; S₁, S₂ – поверхности сосредоточения магнитных зарядов + **σ**, -**σ**.

Рисунок 1 – Распределение дополнительной напряженности **H**_o поля и поверхностной плотности магнитных зарядов **σ** по ширине полюса статора с обмоткой в 1-й области внутри прямоугольника, ограниченного пунктирной линией. Вне этого прямоугольника – 2-я область

Определим H_0 из уравнения rot $H_0 = J$. Так как плоскопараллельное магнитное поле образовано электрическим током, вектор плотности которого содержит лишь одну составляющую (т.е. является скаляром), то из условия rot $H_0 = J$ следует, что H_0 может также иметь единственную составляющую, в нашем случае J_z . Определив H_0 из

rot H = k $\cdot (\partial H_y / \partial x - \partial H_x / \partial y) = J_z$, получим:

 $\mathbf{H}_{o} = \int (\mathbf{k} \cdot \mathbf{J}_{z} \cdot \mathbf{i}) \, d\mathbf{x} = \mathbf{j} \cdot \int \mathbf{J}_{z} \cdot d\mathbf{x} = \mathbf{H}_{ov} = \mathbf{I} \cdot \mathbf{w}_{1} / \mathbf{h}.$

Внутри области 1 $\mathbf{H}_0 = \mathbf{H}_{oy} = \mathbf{I} \cdot \mathbf{w}_1 / \mathbf{h}$ не зависит от **у**, **т.е.** $\partial \mathbf{H}_{0y} / \partial y = \mathbf{0}$ и в соответствии с (5) внутри нее нет магнитных зарядов. Объемная плотность $\rho = \mathbf{0}$ всюду, за исключением двух поверхностей S₁ и S₂, ограничивающих область 1, на которых можно определить поверхностную дивергенцию **div** \mathbf{H}_0 и соответственно поверхностную плотность зарядов σ .

Поверхностные источники характеризуются поверхностной плотностью H_0 представляющей собой поверхностную дивергенцию вектора σ_A , равную скачку его нормальной составляющей. Для S1 имеем

 $\sigma = -\mu_a \operatorname{div} H_o = \mu_a \cdot H_{oy} > 0,$

адля S₂

 $\sigma = -\mu_a \operatorname{div} H_o = -\mu_a \cdot H_{ov} < 0.$

Расчетная модель рассмотренных проводников содержит два простых слоя магнитных зарядов, занимающих ограниченную область пространства. На рисунке 1 показано распределение σ в функции координаты x, аналогичное изменению H_0 в области 1 и, в частности, на поверхностях S_1 и S_2 . Электрический ток проводников оказался замененным магнитными зарядами, распределенными в данном случае на поверхностях.

Эти формулы позволяют рассчитать плоскопараллельное магнитное поле путем сведения его к квазипотенциальному полю скалярных источников.

В области ограниченной поверхностями S_1 и S_2 , поле области 1 создается напряженностью H_o , а вне этой области, в области 2, – магнитными зарядами σ [4]. В области 2 скалярный магнитный потенциал определяется уравнением Лапласа **div** μ_a **grad** $\phi = 0$ в предположении, что на границе между областями 1 и 2 существует фиктивный источник магнитной индукции третьего рода (Г.А.Рязанов, 1969) **B**₀ = $\mu_a \cdot H_o$.

Для сопоставления методов моделирования полей на основе векторного потенциала и метода приведения вихревого магнитного поля к квазипотенциальному рассчитаем поле в полюсах статора и ротора ВИД со следующими данными [1]: число полюсов статора $N_s = 8$, число полюсов ротора $N_r = 6$, диаметр расточки статора $D_o = 282$ мм, длина сердечника $l_g = 250$ мм, наружный диаметр статора $D_a = 434$ мм, коэффициент ширины полюса статора $k_{ps} = 0,5$, ширина полюса ротора в расточке равна ширине полюса статора $b_{ps} = b_p = 55,37$ мм, число витков обмотки w=14, сила тока обмотки $I_1 = 343$ A, воздушный зазор $\delta = 2$ мм. Электротехническая сталь сердечника – марки 2013 по ГОСТ 21427.2-75. Для возможности сопоставления результатов моделирования поля с результатами обычного расчета магнитной цепи на основании закона полного тока моделирование проведено при совпадении осей полюсов ротора и статора.

Для расчета магнитного поля сделаем следующие допущения:

а) ось z декартовой системы координат направлена по оси ВИД;

б) рассмотрим участок магнитной системы, состоящий из одного полюса статора и ротора, ограниченного средним диаметром их «спинок» и прилегающих участоков магнитной ситемы без сердечника от рассматриваемого полюса до соседнего;

в) представим рассматриваемый участок в виде прямоугольника;

г) поле в различных листах магнитной системы идентично, т.е. представим его плоскопараллельным;

д) оси симметрии полюсов ротора и статора совпадают;

е) ввиду симметричности задачи рассмотрим поле одной половины зубцов и соответствующие им поля в воздушном зазоре между полюсами.

Для решения уравнения Лапласа используем метод сеток (конечных разностей) [2, 5]. Для моделирования поля в системе «полюс статора - ротора» сердечник полюсов в тангенциальном и радиальном направлениях разделен на $n_{Tp} = 6$ трубок, имеющих по $n_{TTp} = 5$ точек. Схема моделируемого магнитного поля приведена на рисунке 2 (фрагмент): верхняя половина – для статора, нижняя – для ротора.

R_y – сосредоточенное магнитное сопротивление «спинок» статора и ротора Рисунок 2 – Фрагмент сеточной модели исследуемого магнитного поля одной половины полюса

Всего в половине зубца статора и ротора имеется по 15 точек поля. Межполюсное пространство между зубцами статора и ротора разбито на $n_{Tp} = 4$ трубки, имеющих по $n_{TTp} = 5$ точек, т.е. на 20 точек. Всего в моделируемом участке поля имеем 70 ячеек прямоугольной формы. «Спинки» статора и ротора моделировались одним сосредоточенным сопротивлением R_y . На границе боковых поверхностей полюсов ротора и статора, не примыкающих к зоне их перекрытия, были заданы граничные условия Неймана.

Определение магнитного потенциала в заданных точках проводилось методом узловых потенциалов. Для 2-й трубки статора согласно рисунку 2 имеем

 $-g6'1 \cdot \phi1 + g6'6 \cdot \phi6 - g6'7 \cdot \phi7 - g11'6 \cdot \phi11 = -I6'7$ $-g2'7 \cdot \phi2 - g6'7 \cdot \phi6 + g7'7 \cdot \phi7 - g7'8 \cdot \phi8 - g12'7 \cdot \phi12 = I6'7 - I7'8$ $-g3'8 \cdot \phi3 - g7'8 \cdot \phi7 + g8'8 \cdot \phi8 - g8'9 \cdot \phi9 - g13'8 \cdot \phi13 = I7'8 - I8'9$ $-g4'9 \cdot \phi4 - g8'9 \cdot \phi8 + g9'9 \cdot \phi9 - g9'10 \cdot \phi10 - g14'9 \cdot \phi14 = I8'9 - I9'10$ $-g5'10 \cdot \phi5 - g9'10 \cdot \phi9 + g10'10 \cdot \phi10 - g10'41 \cdot \phi41 - g15'10 \cdot \phi15 = I9'10$

 $\mathbf{g}_{ij} = \mathbf{\mu} \cdot \mathbf{S} / \mathbf{I}_{ij},$

где **g**_{ii} – магнитная проводимость между элементами среды i, j;

S – сечение трубки тока между элементами среды i, j;

 \mathbf{l}_{ij} – расстояние между центрами элементов среды i, j;

 μ – магнитная проницаемость среды в трубке тока μ = **B**/ **H**(**B**). Главные проводимости равны сумме побочных

 $\mathbf{g}_{\mathbf{i}\mathbf{i}} = \sum \mathbf{g}_{\mathbf{i}\mathbf{j}},$

а ток в узлах равен:

 $\mathbf{I}_{i} = \mathbf{H}_{0} \cdot \mathbf{h}_{i} \cdot \mathbf{g}_{ik} / \mathbf{n}_{TTP},$

где **g**_{ik} – проводимость между **i**-й точкой, для которой составлено уравнение, и соседней точкой **k** по радиусу машины;

п_{ттр} – число трубок в радиальном направлении зубца статора.

Полученные уравнения можно решать любым алгебраическим способом. В нашем случае они были решены методом Рунге-Кута.

На основе рассчитанных потенциалов определены магнитный поток и индукция в сердечнике полюса статора. Магнитное сопротивление стали определялось аналитически по зависимостям, приведенным в [2], [4]. Моделировалось нелинейное сопротивление, зависящее от индукции, по формуле:

$\mathbf{H} = \mathbf{K}_{B1} \cdot \mathbf{B} + \mathbf{K}_{B9} \cdot \mathbf{B}^9,$

где K_{B1}=100, K_{B9}=36,789.

Для сравнения эта же задача была решена с использованием векторного магнитного потенциала и метода конечных элементов по программе ELCUT. Рассматриваемая область была разбита на 163 элемента треугольной формы. Поле, полученное в результате моделирования, приведено на рисунке 3.

При анализе в ВИД можно выделить следующие магнитные потоки:

а) проходящий между статором и ротором, – Φ_{12} ;

б) в сердечниках статора и ротора, определяющие насыщение сердечника, $-\Phi_{g}$;

в) рассеяния статора, не доходящий до ротора, – Φ_{σ} .

Рисунок 3 – Моделируемое магнитное поле и линии тока

1. Магнитный поток, проходящий между статором и ротором Φ_{12} состоит из потока, проходящего через воздушный зазор между ротором и статором, и потока, проходящего между полюсами. Для их определения рассмотрим потоки, проходящие через воздушный зазор между ротором и статором Φ_{δ} , поток через боковую поверхность рабочего Φ_{sv} и нерабочего полюса статора $\Phi_{\sigma 3}$, поток со «спинки» статора в промежутке между его полюсами $\Phi_{\sigma 1} + \Phi_{\sigma 2}$ и поток между ротором и статором в промежутке между полюсами статора Φ_{sr1} . Результаты анализа поля приведены в таблице 1. Обозначения согласно рисунку 4.

Метод	Магнитные потоки на границе межполюсного						
расчета	та пространства статора, 10^{-3} Вб						
и его	Φ_{Zmax} ,	$2 \cdot \Phi_{\delta}$	$\Phi_{sv1}+$	$\Phi_{\rm sr1}$ +	Φ_{σ^1} +	Φ_{σ^3}	- Φ_{SV} +
условия	$\Phi_{Z_{pac}}$	0	Φsv2	$\Phi_{\rm sr2}$	Φ_{σ^2}	05	$\Phi_{ m Sr^+}$
	Zpue			512	- 62		$+\Phi\sigma$
Демирчян,	23,2	21,3	0,819	-0,072	-0,186	-0,478	0,094
2.70 узлов	23,1						2.0,44%
ELCUT,	23,1	17,5	0,046	-0,554	-0,136	-0,241	-0,882
163 узла							2.4,9%
ELCUT,	23,1	17,9	0,700	-0,564	-0,0864	-0,231	-0,181
178 узлов							2.1,01%
ELCUT,	23,1	18,3	0,673	-0,597	-0,0776	-0,192	-0,193
197 узлов							2.1,05%

Таблица 1

Для оценки результатов был сделан расчет магнитной системы обычным способом, исходя из закона полного тока

$\mathbf{I} \cdot \mathbf{w} = \sum \mathbf{H}_i \cdot \mathbf{l}_i \ .$

2. Магнитный поток в полюсе статора Φ_z . Как следует из таблицы 1, поток, рассчитанный исходя из закона полного тока Φ_{Zpac} , совпадает с потоком, полученным из моделирования поля в некотором сечении полюса статора, но на 8 % превосходит поток в зазоре между ротором и статором.

Рисунок 4 – Составляющие магнитного потока зубцовой зоны статора

3. Магнитный поток с поверхности активного полюса статора Φ_{sv} . Распределение индукции на боковой поверхности активного полюса статора приведено на рисунке 5. Начало координат находится в воздушном зазоре между ротором и статором. В нижней части полюса у «спинки» магнитный поток входит в полюс статора из межполюсного пространства.

B_{svr(r)} – расчетная аксиальная составляющая магнитной индукции; *B_{svi}* – anпроксимируемое значение этой индукции в зависимости от расстояния от начала координат (начало координат на поверхности полюса статора в зазоре)

Рисунок 5 – Распределение на боковой поверхности активного полюса статора Поскольку при моделировании поля для упрощения задачи было выбрано всего 70 точек, для анализа данных расчета проведена линейная интерполяция индукции B_{svi} по результатам моделирования поля. Полученные интерполяционные зависимости $B_{svr}(r) = f(r)$ положены в основу дальнейшего анализа. Определена координата (радиус r_0), на которой индукция с боковой поверхности полюса равна нулю ($B_{svr}(r_0)=0$) и определены поток, выходящий из полюса Φ_{sv1}

$$\Phi_{sv l} = l_i \cdot \int_{o}^{r_o} B_{vsr}(r) \cdot dr ,$$

и поток, входящий в полюс статора из межполюсного пространства Φ_{sv2}

$$\Phi_{sv 2} = l_i \cdot \int_{r_o}^{r_j} B_{vsr} (r) \cdot dr$$

где r_j – внутренний радиус «спинки» статора.

Расчет показал, что $\Phi_{sv1} = 0,97 \cdot 10^{-3}$ Вб, а $\Phi_{sv2} = -0,151 \cdot 10^{-3}$ Вб. Это явление приводит к тому, что максимальный поток, а следовательно, и индукция в полюсе статора находится не в плоскости между полюсом и «спинкой», а смещен к зазору, в нашем случае приблизительно на 15 мм.

4. Магнитный поток между ротором и статором между полюсами статора Φ_{sr} . Тангенциальное распределение индукции в межполюсном пространстве статора на внутреннем диаметре полюсов приведено на рисунке 6, из которого следует, что в межполюсном пространстве статора имеется поток, направленный как от статора к ротору ($\Phi_{sr1} = 0,596 \cdot 10^{-3}$ Вб), так и в противоположную сторону ($\Phi_{sr2} = -0,524 \cdot 10^{-3}$ Вб).

Рисунок 6 – Распределение радиальной составляющей расчетной индукции в межполюсном пространстве статора $B_{srr}(r)$ и ее аппроксимируемого значения B_{srvi} на внутреннем диаметре полюсов статора (r_{xsvr} – длина дуги в мм; начало координат – поверхности активного полюса статора в воздушном зазоре)

На рисунке 7 приведено распределение индукции на боковой поверхности неактивного полюса статора. Начало координат – на поверхности активного полюса статора в воздушном зазоре. Поток согласно таблице 1 составляет $\Phi_{\sigma 3} = -0.467 \cdot 10^{-3}$ Вб.

Рисунок 7 – Распределение аксиальной составляющей расчетной индукции на боковой поверхности неактивного полюса статора $\Phi_{\sigma 3}$ по высоте полюса (у – расстояние от начала координат в мм; начало координат на поверхности неактивного полюса статора в воздушном зазоре)

На рисунке 8 приведено распределение индукции с поверхности «спинки» статора. Ось координат – на поверхности активного полюса статора. Поток согласно таблице 1 составляет $\Phi_{\sigma 12} = -0,186 \cdot 10^{-3}$ Вб.

Рисунок 8 – Распределение расчетной радиальной составляющей индукции на поверхности «спинки» статора $B_{\sigma 12}$ (ось координат на поверхности активного полюса статора)

Выводы:

1. Магнитный поток в зазоре, рассчитанный в ELCUT, составляет $17,5 \cdot 10^{-3}$ Вб, что на 18 % меньше потока, рассчитанного по [5] и на 25 % ниже, чем по расчету на основе закона полного тока.

2. Сравнивая распределение потоков на различных участках, рассчитанные в ELCUT и по [5], можно отметить существенное расхождение результатов, полученных различными методами. Максимальное расхождение имеем для потока с боковой поверхности активного полюса статора. В результате этого сумма всех магнитных потоков втекающих в межполюсное пространство и истекающих из него, полученная в ELCUT, а именно - Φ_{sv} +

 $\Phi_{sr} + \Phi_{\sigma 1} + \Phi_{\sigma 2} + \Phi_{\sigma 3} = -0,882 \cdot 10^{-3} \neq 0$, т.е. составляет 4,9 % от потока в воздушном зазоре.

3. Моделирование вихревого поля методом приведения его к квазипотенциальному, предложенным К.С.Демирчяном, позволяет повысить точность моделирования по сравнению с методом векторного магнитного потенциала.

Список литературы

1. Захарченко П.И. Исследование магнитного поля в зубцовой зоне вентильного двигателя при малом перекрытии полюсов статора и ротора /П.И.Захарченко, С.В.Карась, Е.Б.Ковалев // Взрывозащищенное электрооборудование:сб. науч. тр.УкрНИИВЭ. –Донецк: ООО «АИР», 2009.-С. 131-137.

2. Бессонов Л.А. Электромагнитное поле / Л.А.Бессонов.-М.: Гардари-ки, 2003.- 316 с.

3. Голландцев Ю.А. Вентильные индукторно-реактивные двигатели /Ю.А.Голландцев.- СПб.: ГНЦ РФ – ЦНИИ «Электроприбор», 2003.- 148 с.

4. Демирчян К С.Теоретические основы электротехники. Т.2 / К.С.Демирчян, И.Р.Нейман, Н.В.Коровкин.- СПб.: Питер, 2009. -432 с.

5. Демирчян К.С. Машинные расчеты электромагнитных полей /К.С.Демирчян, В.Л.Чечурин.- М.: Высш. шк., 1986.- 240 с.

6. Тамм И.Е. Основы теории электричества / И.Е.Тамм. – М.: Физматлит, 2003.- 616 с.

7. Расчет магнитной проводимости воздушного зазора вентильных электродвигателей / Захарченко П.И., Дудник М.З., Карась С.В., Ковалев Е.Б. // Труды V международного симпозиума «Элмаш 2004».- М., 2004.- С. 86-91.