В.В.ПОПОВ, В.В.СУХАНОВ (Санкт-Петербургский Государственный Политехнический Университет) Л.И.ДРИМАНОВИЧ, П.Н.КАЛАЧИКОВ (Филиал ОАО «Силовые машины» «Электросила» в Санкт-Петербурге)

РАСЧЕТ И АНАЛИЗ РЕЗУЛЬТИРУЮЩЕГО МАГНИТНОГО ПОЛЯ В СИНХРОННЫХ ЯВНОПОЛЮСНЫХ ЭЛЕКТРИЧЕСКИХ МАШИНАХ

Введение

В электрических машин особенно теории переменного тока. явнополюсных, широко используется гармонический анализ кривых магнитного поля в зазоре как в режимах холостого хода (магнитное поле обмотки ротора или поле возбуждения, а также магнитные поля обмотки статора или поля продольной и поперечной реакции якоря), так и в режимах нагрузки (результирующее магнитное поле обмоток ротора и статора).

Процедуры моделирования и расчета магнитных полей в синхронных явнополюсных электрических машинах (СЯЭМ) в режимах холостого хода средствами программного комплекса ELCUT/1/ подробно изложены в статье, которую можно найти на сайте производственного кооператива TOP /2/.

В настоящей работе излагаются аналогичные процедуры, но применительно к расчету и анализу результирующего магнитного поля СЯЭМ, структура которого, как известно, зависит не только от геометрии магнитной системы и уровня её насыщения, но и от характера и величины нагрузки машины. Последовательность выполняемых процедур иллюстрируется на примере СЯЭМ, работающей в режиме генератора.

Определение исходных данных режима нагрузки

Синхронный явнополюсный генератор (СЯГ) может работать как на сеть, так и на автономную нагрузку. При этом, в обоих случаях режим нагрузки осуществляется, как правило, в соответствии с регулировочной характеристикой генератора [i=f(I) при U, $cos\varphi$, f = const], которая при пренебрежении активным сопротивлением обмотки статора может быть представлена в относительных единицах следующим образом:

$$\underline{i}(\underline{I}) = \underline{U}\cos[\theta(\underline{I})] + \underline{x}_{d}\underline{I}\sin[\theta(\underline{I}) + \varphi], \qquad (1)$$

где угол нагрузки $\theta(\underline{I})$ определяется, как

$$\theta(\underline{I}) = \operatorname{arctg} \frac{\underline{x}_q \underline{I} \cos \varphi}{\underline{U} + \underline{x}_q \underline{I} \sin \varphi} , \qquad (2)$$

а относительные значения токов и напряжения соответственно равны:

$$\underline{i} = \frac{i}{i_{_{OH}}}, \quad \underline{I} = \frac{I_{\phi}}{I_{_{\phi_H}}}, \quad \underline{U} = \frac{U_{\phi}}{U_{_{\phi_H}}}$$
(3)

Предполагается, что синхронные индуктивные параметры \underline{x}_d и \underline{x}_q , входящие в выражения (1) и (2) известны. Если сведений об этих параметрах нет, то их можно рассчитать средствами пакета ELCUT следующим образом. Сначала, например для номинального тока обмотки статора, необходимо смоделировать на полюсном делении машины поля продольной и поперечной реакции якоря по методике, изложенной в /2/. Затем, с помощью «Мастера индуктивностей» следует рассчитать на единицу длины машины значения энергий магнитного поля продольных и поперечных токов якоря ($W_{rd}^{(1)}, W_{rq}^{(1)}$). После этого достаточно воспользоваться формулами, которые приводятся ниже без вывода и согласно /3/ имеют следующий вид:

$$\underline{x}_{d} = \frac{4p \cdot 2\pi f_{n} \cdot l_{p}}{m_{\phi} \cdot I_{\phi n} \cdot U_{\phi n}} W_{\pi d}^{(1)} , \quad \underline{x}_{q} = \frac{4p \cdot 2\pi f_{n} \cdot l_{p}}{m_{\phi} \cdot I_{\phi n} \cdot U_{\phi n}} W_{\pi q}^{(1)} , \quad (4)$$

где l_p - расчетная длина машины.

В режиме нагрузки СЯГ положительная ось магнитного поля реакции якоря поворачивается по часовой стрелке относительно положительной оси магнитного поля обмотки ротора (оси d) на геометрический угол α_{c} , который, при измерении в радианах или градусах, равен:

$$\alpha_{z}(\underline{I}) = \frac{\frac{\pi}{2} + [\theta(\underline{I}) + \varphi]}{p} , \qquad \alpha_{z}^{\circ}(\underline{I}) = \frac{90^{\circ} + [\theta^{\circ}(\underline{I}) + \varphi^{\circ}]}{p}$$
(5)

Однако, при моделировании результирующего магнитного поля машины с учетом реальной геометрии зубцовой зоны статора, поворот магнитного поля якоря практически возможен лишь на такой угол, который кратен углу, соответствующему зубцовому делению статора. В геометрических радианах или градусах этот угол определяется, как

$$\alpha_{tz} = \frac{2\pi}{z} \quad , \qquad \alpha_{tz}^{\circ} = \frac{360^{\circ}}{z} \quad , \tag{6}$$

где z=2pmq - число зубцов статора.

Поэтому, число зубцовых делений статора N_{tz} , на которое надо сместить по часовой стрелке относительно оси d ось магнитного поля якоря, будет равно:

$$N_{tz}(\underline{I}) = \frac{\alpha_{z}(\underline{I})}{\alpha_{tz}} = \frac{\alpha_{z}^{\circ}(\underline{I})}{\alpha_{tz}^{\circ}}$$

или

$$N_{tz}(\underline{I}) = \frac{z}{2\pi p} \left[\frac{\pi}{2} + \theta(\underline{I}) + \varphi \right] = \frac{z}{360^{\circ} p} \left[90^{\circ} + \theta^{\circ}(\underline{I}) + \varphi^{\circ} \right]$$
(7)

Если в процессе расчетов окажется, что N_{tz} не целое число, то в первом приближении его следует округлить до ближайшего целого числа.

Выражения (7) позволяют определить диапазон изменения числа N_{tz} при переходе от режима холостого хода ($\underline{I}=0$) к режиму номинальной нагрузки ($\underline{I}=1$). Если теперь построить зависимость $N_{tz}(\underline{I})$ и задаться возможными целочисленными значениями N_{tz} из полученного диапазона, то можно

графически найти относительные значения токов нагрузки <u>I</u>, а ПО соответствующие регулировочной характеристике (1)рассчитать ИМ относительные значения токов возбуждения *і*. Переходя после этого к абсолютным значениям токов $I_d = \underline{I} \cdot I_{d\mu}$ и $i = \underline{i} \cdot i_{o\mu}$, легко найти и соответствующие плотности токов в активных проводниках обмоток статора (δ_{nn}) и ротора (δ_o). Указанные плотности токов можно также определить путем пропорционального пересчета следующим образом:

$$\delta_{np} = \underline{I} \cdot \delta_{npH} , \ 0 < \underline{I} < 1 ; \qquad \delta_o = \underline{i}(\underline{I}) \cdot \delta_{OH} , \ 1 < \underline{i}(\underline{I}) < \underline{i}_H = \underline{i}(1) , \tag{8}$$

где δ_{nph} - плотность тока в активных проводниках обмотки статора при номинальном токе якоря $I_{\phi h}$; δ_{oh} - плотность тока в активных проводниках обмотки ротора при номинальном токе холостого хода i_{oh} .

Описанный алгоритм в целях большей точности расчетов можно осуществить и аналитически. Для этого необходимо разрешить выражения (7) относительно тока <u>I</u> в функции числа N_{tz} . В частности, с учетом (2), зависимость <u>I(N_{tz})</u> будет иметь следующий вид:

$$\underline{I}(N_{iz}) = \frac{\underline{U} \cdot tg \left[\frac{2\pi p \cdot N_{iz}}{z} - \left(\frac{\pi}{2} + \varphi\right) \right]}{x_q \left\{ \cos \varphi - \sin \varphi \cdot tg \left[\frac{2\pi p \cdot N_{iz}}{z} - \left(\frac{\pi}{2} + \varphi\right) \right] \right\}}$$
(9)

Здесь необходимо отметить, что, как показывает практика расчетов, число целочисленных значений N_{tz} по (7) невелико и может быть получено только при тех значениях тока <u>I</u>, которые удовлетворяют условию $0 < \underline{I} < 1$.

Если работа СЯГ под нагрузкой в режиме регулировочной характеристики осуществляется при $\varphi = \varphi_{\mu}$ и $U_{\phi} = U_{\phi\mu}$, то <u>U</u>=1, а зависимости (1),(2) и (7),(9) упрощаются до следующих выражений:

$$\underline{i}(\underline{I}) = \cos[\theta(\underline{I})] + \underline{x}_{d} \underline{I} \sin[\theta(\underline{I}) + \varphi_{n}], \qquad \theta(\underline{I}) = \operatorname{arctg} \frac{\underline{x}_{q} \underline{I} \cos \varphi_{n}}{1 + \underline{x}_{q} \underline{I} \sin \varphi_{n}}$$
(10)

$$N_{tz}(\underline{I}) = \frac{z}{2\pi p} \left[\frac{\pi}{2} + \theta(\underline{I}) + \varphi_{H} \right] = \frac{z}{360^{\circ} p} \left[90^{\circ} + \theta^{\circ}(\underline{I}) + \varphi_{H}^{\circ} \right]$$
(11)

$$\underline{I}(N_{tz}) = \frac{tg\left[\frac{2\pi p \cdot N_{tz}}{z} - \left(\frac{\pi}{2} + \varphi_{u}\right)\right]}{x_{q}\left\{\cos\varphi_{u} - \sin\varphi_{u} \cdot tg\left[\frac{2\pi p \cdot N_{tz}}{z} - \left(\frac{\pi}{2} + \varphi_{u}\right)\right]\right\}}$$
(12)

Таким образом, для моделирования результирующего магнитного поля СЯГ под нагрузкой при помощи программного комплекса ELCUT необходимо задаться режимом и характером нагрузки I и φ , а затем рассчитать токораспределение обмоток ротора и статора (8) в соответствии с регулировочной характеристикой генератора (1) и углом нагрузки (2), обеспечив при этом соответствующий поворот на целое число зубцовых делений статора N_{tz} положительной оси магнитного поля реакции якоря относительно положительной оси *d* магнитного поля обмотки ротора.

Моделирование результирующего магнитного поля СЯГ в режимах нагрузки

Апробация методики моделирования результирующего магнитного поля СЯЭМ в режимах нагрузки в настоящей работе была осуществлена для СЯГ типа ГСТ-1400 конструкции ОАО «Электросила» /4/ при трехфазном исполнении обмотки статора.

Моделирование магнитных полей в поперечном сечении магнитной системы этой машины осуществлялось во всем диапазоне нагрузок от холостого хода и вплоть до номинального режима работы в соответствии с регулировочной характеристикой генератора, которая представлена рис.1. При этом, все режимы нагрузки моделировались в пределах всего поперечного сечения магнитной системы, т.е. на всех 2p полюсных делениях машины. Конечной целью работы в первую очередь являлось исследование зависимости величины амплитуды третьей гармоники магнитного поля в зазоре при переходе от режима холостого хода к режиму номинальной нагрузки.

Рис.1. Регулировочная характеристика ГСТ-1400 <u>*i*</u>=*f(<u>I</u>)* при <u>U</u>=1, *cos* φ_{μ} =0.95, <u>x</u>_d=2.3486, <u>x</u>_q=1.113.

Расчетная геометрическая модель рассматриваемой машины (p=6, m=3, q=4, z=2pmq=144) показана на рис.2. и соответствует конструкции СЯГ типа ГСТ-1400. Геометрические, физические и иные необходимые свойства этой модели можно найти в соответствующих файлах задач магнитостатики пакета ELCUT, которые прилагаются к настоящей статье и сгруппированы по признаку режима нагрузки. Принятое токораспределение обмоток ротора и статора максимально возможно учитывает реальные конструктивные особенности обмоток и рассчитано в соответствии с методикой настоящей статьи и /2/. Результаты такого расчета в относительных и абсолютных единицах и в зависимости от режима нагрузки приведены в таблице 1.

Рис. 2. Геометрическая модель поперечного сечения ГСТ-1400.

Таблица 1

Регулировочная характеристика ГСТ-1400								
<u>i</u>	1	1.211	1.897	2.741				
<u>I</u>	0	0.2	0.6	1				
N_{tz}	-	$7.959 \approx 8$	$9.059 \approx 9$	9.754 ≈10				
Метки обмоток	Расчетные значения плотностей токов в обмотке возбуждения и пазах статора (А/м ²)							
Обмотка ротора								
+OB	1029100	1246240	1952200	2820760				
-OB	-1029100	-1246240	-1952200	-2820760				
Обмотка статора								
OC1	0	480800	1442400	2404000				
OC2	0	360600	1081800	1803000				
OC3	0	240400	721200	1202000				
OC-0	0	0	0	0				
-OC3	0	-240400	-721200	-1202000				
-OC2	0	-360600	-1081800	-1803000				
-OC1	0	-480800	-1442400	-2404000				

Положительная ось магнитного поля реакции якоря проходит через середину паза, где плотность тока равна нулю (метка ОС-0 в таблице 1).

В качестве примеров для генератора ГСТ-1400 на рис.3 и рис.4 приведены картины магнитных полей в режимах холостого хода (І=0) и номинальной нагрузки (I=1), а на рис.5 для тех же режимов работы представлены кривые распределения радиальной составляющей магнитной индукции B_r в функции тангенциальной координаты х на уровне середины минимального зазора. Зависимости на рис.5 получены как результат обработки данных моделирования в среде Mathcad /5/ путем интерполяции исходных, таблично кривых поля кубическими сплайнами. В дальнейшем заданных, они представляются гармоническим рядом Фурье /6/ вплоть до гармоник первого зубцового порядка. При этом, для обеспечения необходимой точности расчетов, особенно гармоник зубцового порядка, при табличном задании функции $B_r(x)$ следует позаботиться о том, чтобы на зубцовом делении по координате х было задано, если это возможно, не менее 3-5 значений В_r.

Рис. 3. Картина магнитного поля в поперечном сечении магнитной системы генератора ГСТ-1400 в режиме холостого хода.

Рис. 4. Картина магнитного поля в поперечном сечении магнитной системы генератора ГСТ-1400 в режиме номинальной нагрузки.

Рис. 5. Кривые распределения радиальной составляющей магнитной индукции *B_r(x)* на уровне середины минимального зазора.

Гармонический анализ кривых магнитного поля в зазоре машины

При гармоническом анализе кривых магнитного поля в зазоре машины, исходя из распределения радиальной составляющей магнитной индукции $B_r(x)$, которое показано на рис.5-б необходимо учитывать, что функция $B_r(x)$ не является четной или нечетной, хотя она по-прежнему симметрична относительно оси абсцисс. Поэтому разложение такой функции в ряд Фурье будет содержать как косинусные, так и синусные *n*-е гармоники нечетного порядка с нулевыми начальными фазами, т.е.:

$$B_{r}(x) = \sum_{n=1}^{\infty} \left(B_{nc} \cos \frac{n\pi x}{\tau} + B_{ns} \sin \frac{n\pi x}{\tau} \right), \qquad (13)$$

где амплитуды косинусных и синусных гармоник *B_{nc}* и *B_{ns}* определяются, как

$$B_{nc} = \frac{1}{\tau} \int_{0}^{2\tau} B_r(x) \cos \frac{n\pi x}{\tau} dx = B_c(n) , \qquad (14)$$

$$B_{ns} = \frac{1}{\tau} \int_{0}^{2\tau} B_r(x) \sin \frac{n \pi x}{\tau} dx = B_s(n)$$
(15)

Однако, для практических расчетов ряд Фурье в виде (13) неудобен, так как требует дважды вычислять тригонометрические функции. В этом смысле более удобной является запись, когда разложение функции в ряд Фурье содержит только синусные или только косинусные гармоники, но с начальными фазами, отличными от нуля. Разложения такого рода, как известно, имеют следующий вид /6/:

$$B_r(x) = \sum_{n=1}^{\infty} B_n^{(s)} \sin\left(\frac{n\pi x}{\tau} + \beta_{ns}\right), \qquad (16)$$

$$B_r(x) = \sum_{n=1}^{\infty} B_n^{(c)} \cos\left(\frac{n\pi x}{\tau} - \beta_{nc}\right), \qquad (17)$$

где амплитуды $B_n^{(s)}$, $B_n^{(c)}$ и начальные фазы β_{ns} , β_{nc} соответственно равны:

$$B_{n}^{(s)} = |B_{ns} + jB_{nc}| = \sqrt{B_{ns}^{2} + B_{nc}^{2}} , \qquad \beta_{ns} = \arg(B_{ns} + jB_{nc}) = \arg(\frac{B_{nc}}{B_{ns}} , \quad (18)$$

$$B_{n}^{(c)} = |B_{nc} + jB_{ns}| = \sqrt{B_{nc}^{2} + B_{ns}^{2}} , \qquad \beta_{nc} = \arg(B_{nc} + jB_{ns}) = \arg(\frac{B_{ns}}{B_{nc}}$$
(19)

Из последних выражений в силу того, что $B_n^{(s)} = B_n^{(c)}$ и $\beta_{ns} + \beta_{nc} = \frac{\pi}{2}$, следует

идентичность разложений (16),(17) и выбор одного из них определяется лишь соображениями удобства. Поэтому, с учетом (14),(15) вместо (16),(17) можно записать:

$$B_{r}(x) = \sum_{n=1}^{\infty} B_{mn} \sin\left(\frac{n\pi x}{\tau} + \beta_{ns}\right) = \sum_{n=1}^{\infty} B_{mn} \cos\left(\frac{n\pi x}{\tau} - \beta_{nc}\right), \quad (20)$$

где амплитуда и начальные фазы соответственно равны:

$$B_{mn} = \sqrt{B_c^2(n) + B_s^2(n)} = B_m(n), \qquad (21)$$

$$\beta_{ns} = \operatorname{arctg} \frac{B_c(n)}{B_s(n)} = \beta_s(n) \quad , \quad \beta_{nc} = \operatorname{arctg} \frac{B_s(n)}{B_c(n)} = \beta_c(n) \tag{22}$$

Для оценки и удобства сравнения амплитуд высших гармоник магнитной индукции их значения целесообразно представить в относительных единицах, выбрав при этом в качестве базисной величины амплитуду первой гармоники B_{m1} . Тогда, все высшие гармоники в относительных единицах будут равны:

$$\underline{B}_{mn} = \frac{B_{mn}}{B_{ml}} = \frac{B_m(n)}{B_m(l)}$$
(23)

Основные результаты моделирования и гармонического анализа магнитного поля при неравномерном зазоре и трехфазном исполнении обмотки статора СЯГ типа ГСТ-1400, полученные в соответствии с вышеизложенными методиками расчетов приведены в таблице 2.

Таблица 2

Реж	ИМ	Амплитуды гармоник радиальной составляющей магнитной						
нагру	/ЗКИ	индукции на уровне середины минимального зазора					зора	
ПС)	в абсолютных и относительных единицах						
регул-ной		n=1	<i>n=3</i>	n=5	<i>n</i> =7	$n_{z(-)}=23$	$n_{z(+)}=25$	
характ-ке		B_{ml}	$B_{m3}/\underline{B}_{m3}$	B_{m5} / \underline{B}_{m5}	$B_{m7}/\underline{B}_{m7}$	B_{m23} / \underline{B}_{m23}	B_{m25} / \underline{B}_{m25}	
<u>i</u>	Ι	Тл	Тл /о.е.	Тл /о.е.	Тл /о.е.	Тл /о.е.	Тл /о.е.	
1	0	0.801	0.034/0.043	0.041/0.051	0.046/0.058	0.089/0.111	0.063/0.079	
1.211	0.2	0.822	0.08/0.098	0.054/0.066	0.05/0.06	0.089/0.108	0.065/0.079	
1.897	0.6	0.881	0.189/0.214	0.064/0.072	0.067/0.076	0.09/0.102	0.07/0.079	
2.741	1	0.866	0.266/0.307	0.019/0.022	0.107/0.124	0.08/0.092	0.07/0.081	

Из таблицы 2 следует, что амплитуда основной гармоники магнитной индукции при переходе от режима холостого хода к режиму номинальной нагрузки изменяется незначительно, имея при нагрузке по току якоря I=0.6 небольшой максимум. Наоборот, амплитуда третьей гармоники поля в зазоре при тех же условиях монотонно возрастает, увеличиваясь более чем в семь раз.

Следует отметить, что все результаты расчета, касающиеся основной и третьей гармоник поля в зазоре, хорошо согласуются с аналогичными данными, приведенными в /4/.

Амплитуды пятой и седьмой гармоник магнитной индукции ослаблены, а характер их изменения похож на характер изменения первой и третьей гармоник соответственно. Высшие гармоники поля, обозначенные в таблице 2 через $n_{z(-)}=23$ и $n_{z(+)}=25$ являются гармониками первого зубцового порядка, номер которых определяется, как $n_z=2mq\pm 1$. Величина амплитуд этих гармоник практически не зависит от режима нагрузки и соизмерима со значениями амплитуд пятой и седьмой гармоник.

Более полные и подробные результаты расчетов можно найти в соответствующих файлах задач, которые прилагаются к тексту настоящей статьи и организованы следующим образом. Для каждого из четырех рассмотренных режима работы машины заведена своя «папка», которая содержит три типа файлов. Это, прежде всего, Elcut-файлы, затем Word-файлы и Mathcad-файлы. Elcut-файлы содержат необходимые сведения о задаче, её геометрической модели и физических свойствах задачи и модели. В Word-файлы помещена информация из решения полевых задач, которая требуется для гармонического анализа кривых поля в зазоре машины. Это - таблично заданное распределение радиальной составляющей магнитной индукции $B_r(x)$ на уровне середины минимального воздушного зазора. В Mathcad-файлах осуществляется процесс непосредственного расчета гармонического состава исходных кривых магнитного поля в зазоре и его графического представления на двойном полюсном делении машины.

Заключение

В процессе реализации целей и задач, поставленных в настоящей статье, рассмотрены важные для практики электромашиностроения вопросы расчета и анализа магнитных полей в синхронных явнополюсных электрических машинах специального назначения.

В целом они сводятся к следующим положениям:

- 1. В магнитостатическом приближении в среде программного комплекса ELCUT смоделированы двумерные краевые задачи расчета результирующего магнитного поля в поперечном сечении синхронного явнополюсного генератора. Постановка и решение указанных задач позволяет учитывать реальную геометрию магнитной системы, действительное токораспределение обмоток ротора и статора, а также нелинейные свойства ферромагнитных сердечников.
- 2. Разработана методика определения исходных данных и параметров режима нагрузки в соответствии с регулировочной характеристикой генератора, позволяющая рассчитывать и анализировать результирующее магнитное поле в широком диапазоне нагрузок, начиная от режима холостого хода и вплоть до номинальной нагрузки машины.
- 3. В среде вычислительного пакета Mathcad разработана и реализована методика гармонического анализа кривых магнитного поля в зазоре машины на основе распределения радиальной составляющей магнитной индукции, полученного из решения полевой задачи.

Апробация разработанных методик исследования и расчета осуществлена на примере синхронного явнополюсного генератора типа ГСТ-1400. Сопоставление результатов расчета важнейших характеристик машины, полученных на основе моделирования полей, с заводскими методиками расчета показало их хорошее совпадение.

Список использованных источников

1. ELCUT. Моделирование двумерных полей методом конечных элементов. Версия 5.1. Руководство пользователя.-СПб.: Производственный кооператив ТОР, 2003.-249 с.

2. Суханов В.В. Расчет магнитных полей в синхронных явнополюсных электрических машинах.-СПбГПУ.: кафедра «Электрические машины», 2002.-12c.- http://www.tor.ru/elcut/articles/sukhanov/jasm.htm.

3. Вольдек А.И. Зависимость между энергией магнитного поля и индуктивностями многофазных обмоток.-Труды ЛПИ № 241.- Л., 1964,- с.18-22.

4. Записка расчетная и обмоточная. № ОБС.251.675. ГСТ-1400-12УХЛ2. ОАО «Электросила».

5. Макаров Е.Г. Инженерные расчеты в Mathcad. Учебный курс.-СПб.: Питер, 2003.-448с.

6. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров.-М.: Наука, 1978.-832 с.