В 2011 году защищена дипломная работа на тему:

Численный расчёт тепловых схем замещения неоднородных тел

Автор: Колесникова И.С., студентка 5-го курса физикоматематического факультета

Руководитель к.т.н., доцент Селюк С.С.

Краткая характеристика работы

\sim		~ ~ ~ ~		
/ V/ \	1 1 2 1) \ / /	1	111:
	<i>/</i> I 🗗 I	γж д	4 H	ν I \vdash
\sim	μ	РЖА	111	ш

A	
введение	7
1 ПОСТАНОВКА ЗАДАЧИ	8
1.1 Физическая постановка	8
1.2 Уравнение распространения тепла в изотропном твердом теле	14
2. Математическая постановка	18
2.1. Задача вычисления коэффициентов эквивалентной теплопроводно	сти 18
2.1.1 Эквивалентная теплопроводность неоднородного (многослойног	о) тела.
	18
2.1.2 Аналитическое вычисление коэффициентов эквивалентной	
теплопроводности	20
2.2 Задача синтеза тепловых схем замещения	25
2.2.1 Тепловое сопротивление в прямоугольных координатах	25
3 Вычислительные эксперименты	28
3.1 Сравнение численных и аналитических расчетов эквивалентной	
теплопроводности	28
3.1.1 Многослойная плоская стенка ($\Phi x \neq 0$, $\Phi y = 0$)	28
3.1.2 Многослойная плоская стенка ($\Phi x \neq 0$, $\Phi y = 0$)	30
3.2 Сравнение численных и аналитических расчетов теплового потока	c
использованием тепловых схем замещения	33
3.2.1 Многослойная плоская стенка ($\Phi x \neq 0$, $\Phi y = 0$)	33
4 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ	

4.1 Анализ негативных факторов при работе в аудитории, оснащенн	юй ПЭВМ
	36
4.1.1 Микроклимат рабочей зоны	37
4.1.2 Освещение	38
4.1.3 Шум и вибрация	41
4.1.4 Электромагнитное излучение	42
4.2 Обеспечение безопасности оператора ПЭВМ	43
4.2.1 Организация рабочего места оператора ПЭВМ	43
4.2.2 Требования к ПЭВМ	44
4.2.3 Требования к помещениям для работы с ПЭВМ	46
4.2.4 Общие требования к организации рабочих мест пользователей	ПЭВМ 47
4.2.5 Расчет естественного освещения	48
4.2.5.1 Определение нормированного значения К.Е.О.	48
4.2.5.2 Определение суммарной площади световых проемов	49
4.3 Чрезвычайные ситуации	51
5 ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ	56
5.1 Целесообразность разработки программного продукта	56
5.2 Оценка затрат труда на разработку проекта	57
5.3 Календарное планирование	58
5.3 Стоимостная оценка проекта	60
5.4 Формирование цены программного комплекса	67
Список литературы	68

3.1.2 Многослойная плоская стенка

Исследуется теплопередача в прямоугольной пластине размера $a \times b$ (a=1м, b=0,6 м), состоящей из 9 различных слоев, расположенных как перпендикулярно, так и параллельно потоку (рисунок 3.4).

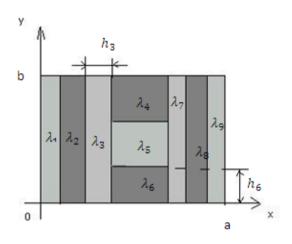


Рисунок 3.4 – расчетная область

Цель эксперимента: проверить, насколько совпадут результаты расчетов по численным и аналитическим методикам.

Численные расчеты проведены с помощью пакета Elcut5.6. На рисунке приведена расчетная подобласть с конечноэлементной сеткой

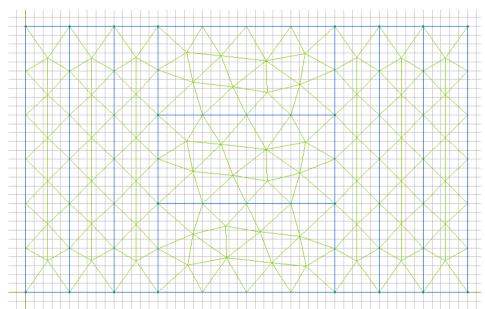


Рисунок 3.5 — расчетная область с конечноэлементной сеткой В области решается краевая задача

$$\frac{\partial}{\partial y}T(x,y) + \frac{\partial}{\partial y}T(x,y) = 0, \ 0 < x < a, 0 < y < b,$$

$$\frac{\partial}{\partial y}T(x,0) + \frac{\partial}{\partial y}T(x,b) = 0, T(0,y) = 100, T(a,y) = 0.$$

На границе слоев выполняются условия сопряжения.

Картина температурного поля приведена на рисунке 3.6

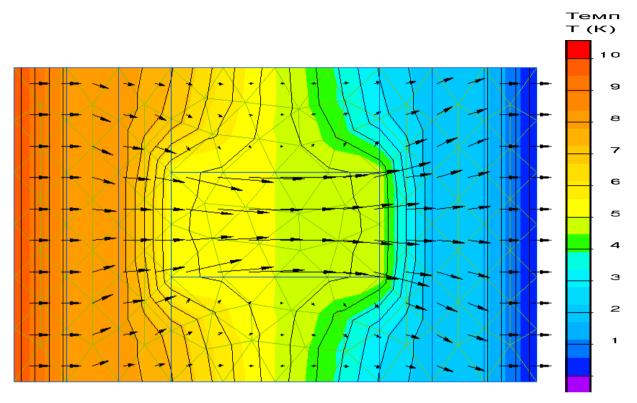


Рисунок 3.6 – Температурное поле в многослойном теле

Изображены изотермы и вектора плотности теплового потока. Значения удельной теплопроводности слоев при этом равны $\lambda_1=1,7$ (материал — железобетон); $\lambda_2=380$ (материал — медь); $\lambda_3=1,7$ (материал-железобетон); $\lambda_4=0,7$ (материал-бетон); $\lambda_5=52$ (материал — сталь). Далее приведены результаты расчетов по аналитическим и численным методам. Фпоток тепла сквозь левую границу пластины, λ_4^* — эквивалентная теплопроводность, рассчитанная численно с помощью пакета Elcut, λ_4^* — эквивалентная теплопроводность, рассчитанная с помощью аналитических формул (37) и (51).

Таблица 3.2 – Сравнение результатов расчета

Φ	19,171 Вт	
$\lambda_{ ext{ iny q}}^*$	1,7 Вт/(м К)	
$\lambda_{ m a}^*$	1,71 Bt/(M K)	