2007

ИЮЛЬ-СЕНТЯБРЬ

№ 3 (19)

ТЕХНОЛОГИИ

УДК 533.9.924+621.793.18

МОДЕЛИРОВАНИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ ПАРАМЕТРОВ МАГНЕТРОННЫХ РАСПЫЛИТЕЛЬНЫХ СИСТЕМ

С.Н. МЕЛЬНИКОВ, С.П. КУНДАС, И.В. СВАДКОВСКИЙ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 7 марта 2007

Представлены результаты моделирования нескольких типов магнетронных распылительных систем. Методом сравнительного анализа конфигураций магнитных полей определены параметры, которые могут служить критериями степени несбалансированности.

Ключевые слова: магнетрон, моделирование, коэффициенты несбалансированности.

Введение

Современные магнетронные распылительные системы характеризуются большим многообразием конструкций и характеристик. Существуют различные виды конструкций магнетронов: Circular magnetron cathodes, Rectangular magnetron cathodes, Variable magnetron cathodes, UHV circular magnetron cathode, Full face erosion magnetron cathodes, Double rectangular magnetron cathodes [1]. В магнетронных распылительных системах постоянного тока (MSS) можно выделить: MSS пониженного давления с компрессией магнитного поля, планарную MSS фланцевой конструкции, планарную MSS с протяженной прямоугольной мишенью [2]. Кроме катодных узлов с плоской планарной мишенью, используются узлы с конической мишенью, плоской фасонной мишенью, цилиндрической мишенью, подвижной магнитной системой и др. [3]. Все типы магнетронов нашли применение и используются на предприятиях и в лабораториях. Однако практическое применение современных магнетронных распылительных систем

Рис. 1. Схема магнетронной системы с дополнительным соленоидом

сопряжено с трудностями в воспроизводимости параметров тонкопленочных слоев из-за существующих проблем в обеспечении заданного соотношения ион/атом на поверхности конденсации. Это соотношение, в свою очередь, зависит от степени несбалансированности магнетронных распылительных систем.

Объект исследований и особенности его моделирования

Общий вид схемы магнетронной распылительной системы представлен на рис. 1.

В сбалансированном магнетроне плазменный разряд с высокой концентрацией частиц ограничивается областью мишени. Зона с повышенной концентрацией электронов распространяется на расстоянии не более нескольких сантиметров от поверхности мишени. Если подложка установлена за пределами этой области, она подвергается воздействию области низкой плотности плазмы, а потока ионов, бомбардирующих подложку, чаще всего недостаточно для модификации структуры пленки [5].

В несбалансированных магнетронных распылительных системах (UBM), в отличие от сбалансированных MSS, не все линии магнитного поля замкнуты между центральным и внешним полюсами магнитной системы. UBM бывают 1-го и 2-го типа [2]. Большой интерес представляют UBM 2-го типа. В этих системах внешний полюс усилен относительно центрального полюса. В этом случае незамкнутые линии магнитного поля с периферии катода направлены к подложке. Выбитые из мишени электроны ускоряются в области темного катодного пространства и входят в область плазмы по циклоидальной траектории. Электроны циркулируют в ловушке до тех пор, пока не произойдет несколько ионизирующих столкновений с атомами рабочего газа, в результате которых электроны теряют полученную от электрического поля энергию. В UBM область распространения покинувших ловушку электронов ограничена усиленным боковым магнитным полем. Осевое магнитное поле заставляет электроны, покинувшие область разряда, двигаться по спирали вдоль силовой линии. При этом примерно в 2 раза возрастает концентрация электронов в области мишень-подложка и увеличивается электронная температура. В результате наблюдается немаксвелловское распределение электронов по энергиям с более высокой концентрацией высокоэнергетичных групп электронов [6]. Возникающее электрическое поле поляризации препятствует дальнейшему нарушению квазинейтральности. Для компенсации возникающего объемного отрицательного заряда ионы за счет амбиполярной диффузии вытягиваются из области разряда и ускоряются в направлении подложки. Использование дополнительного соленоида, установленного в промежутке мишень-подложка [2], позволяет управлять соотношением ион/атом в процессе нанесения.

В MSS практически все линии магнитного поля над поверхностью мишени замкнуты между полюсными наконечниками. В прикатодной области существует широкая область сильного магнитного поля, силовые линии которого почти параллельны распыляемой мишени. Увеличение объема боковых магнитов в UBM приводит к искривлению формы магнитной ловушки и возникновению "незамкнутых" силовых линий магнитного поля.

Отношение потока ионов к потоку осаждаемого материала является одним из основных параметров, во многих случаях определяющих структуру и свойства пленок формируемых ионно-стимулированными методами. Отношение ион/атом имеет вид [2]

$$\frac{i}{a} = \frac{j}{e \rho V}.$$
(1)

Отличительной особенностью несбалансированных магнетронов является наличие на оси устройства области с противоположным направлением вертикальной составляющей магнитного поля B_{\perp} . Было экспериментально определено, что расстояние от мишени до точки на оси UBM, в которой B_{\perp} изменяет направление на противоположное, Z_0 (рис. 2 [1]) зависит от соотношения периферийного и центрального магнитных потоков на поверхности мишени [2].

Для количественной оценки степени несбалансированности введены [4] понятия коэффициентов несбалансированности и геометрической несбалансированности UBM, которые характеризуют конфигурацию магнитного поля и, следовательно, величину ионного тока на подложку.

Коэффициент несбалансированности К равен отношению периферийного и центрального магнитных потоков на поверхности мишени:

$$K = \frac{\Phi_1}{\Phi_2}.$$
(2)

Рис. 2. Положение точки Z₀ для разных конфигураций магнетронов

Для UBM [2]:

$$K = \frac{\int_{S_1} B_{\perp 1} dS}{\int_{S_2} B_{\perp 2} dS},$$
(3)

где $B_{\perp 1}$ и S_1 — соответственно осевая составляющая магнитного поля на поверхности мишени и площадь поперечного сечения боковых магнитов; $B_{\perp 2}$ и S_2 — соответственно, осевая составляющая магнитного поля на поверхности мишени и площадь поперечного сечения центральных магнитов. В случае равенства магнитных потоков бокового и центрального полюсных наконечников (K=1) практически все линии магнитного поля замыкаются над поверхностью мишени. При увеличении K магнитный поток внешнего полюса превышает центральный магнитный поток и часть магнитных линий замыкается через внешний контур магнитной системы. В случае МАС периферийный магнитный поток будет представлять собой сумму магнитных потоков полюсного наконечника и магнитного потока соленоида.

Коэффициент геометрической несбалансированности *K*_G рассчитывается с помощью выражения (см. рис. 1) [2]:

$$K_G = \frac{Z_0}{2\overline{R}},\tag{4}$$

где \overline{R} — радиус средней линии зоны распыления.

Расстояние от мишени до точки на оси UBM, в которой B_{\perp} изменяет направление на противоположное, может быть определено расчетом конфигурации магнитного поля с помощью уравнения Пуассона для векторного магнитного потенциала **A** (**B**=rot **A**, **B** — вектор магнитной индукции).

Для количественной оценки степени несбалансированности введены понятия коэффициентов несбалансированности и геометрической несбалансированности UBM [4], которые количественно характеризуют конфигурацию магнитного поля и, следовательно, величину ионного тока на подложку. Кроме того, для оценки степени несбалансированности, используется величина магнитного интеграла A_{mag} , которая характеризует работу, затрачиваемую электроном, для выхода из магнитной ловушки. Чтобы найти этот параметр необходимо определить две характерные точки несбалансированного магнетрона: координаты точки на поверхности мишени, где $E_{\perp}H$ и координаты точки Z_0 . Эти точки соединяются отрезком прямой и производится интегрирование этого участка согласно выражению:

$$A_{mag} = \int \vec{B}x d\vec{x} = \sum_{i=1}^{n} \left| \vec{B} \right| \cdot \vec{x} \cdot \sin \alpha , \qquad (5)$$

где \vec{B} — вектор индукции магнитного поля в заданной точке.

Результаты моделирования и их анализ

Для исследования влияния конструктивных параметров магнетронов на их выходные характеристики проведено моделирование магнетронов с помощью программы ELCUT [7]. Результаты расчета семейства силовых линий и семейства графиков вертикальной составляющей индукции магнитного поля на оси магнетрона показаны на рис. 3 и 4. Моделирование проведено исходя из использования в магнетронах самарий-кобальтовых постоянных магнитов.

Первоначально проводилось исследование влияния геометрии магнетронной системы на положение точки Z_0 при отключенном соленоиде (рис. 3). Установлено, что на оси несбалансированного магнетрона имеется область с противоположным направлением магнитного поля. По полученным данным можно определить ширину внешнего магнита (l), при которой магнетронная система переходит из несбалансированного в сбалансированный тип. Максимальное расстояние до точки Z_0 наблюдается при ширине внешнего магнита 6 мм. Дальнейшее уменьшение внешнего магнита приведет к резкому удалению точки Z_0 от поверхности мишени. Следовательно, вычисление показателя степени несбалансированности K_G по формуле, указанной в [2] становится нецелесообразным. При этом можно выяснить, как будет себя вести коэффициент K в момент перехода магнетрона к сбалансированному типу. Так как на практике чаще всего применяются мишени с радиусом не более 150 мм, то этот размер принят в качестве максимального. К достоинству использования для оценки несбалансированности магнетронов коэффициента K можно отнести возможность его вычисления при различных положениях магнитной системы. Однако у параметра есть ряд недостатков. Как видно из рис. 3, относительная стабильность коэффициента K наблюдается в диапазоне радиуса мишени от 40 до 75 мм.

Рис. 3. Результаты компьютерного моделирования распределения индукции магнитного поля над поверхностью МАС и вертикальной составляющей индукции магнитного поля на оси магнетрона при радиусе центрального магнита 13 мм, радиусе мишени 40 мм, ширине внешнего магнита 6 мм

Семейство графиков (рис. 4), полученных в результате изменения ширины внешнего магнита, позволяет найти оптимальное значение ширины внешнего магнита, при котором магнетронная система переходит из несбалансированного в сбалансированный тип.

Рис. 4. Результаты компьютерного моделирования распределени вертикальной составляющей индукции магнитного поля на оси магнетрона при R_c=13 мм, R_m=40 мм

Как видно из рис. 5, при ширине внешнего магнита 6 мм точка Z_0 имеет максимальную высоту. Постепенное уменьшение внешнего магнита приведет к резкому увеличению положения точки Z_0 относительно мишени. Следовательно, вычислить показатель степени несбалансированности K_G становится невозможным.

В связи с этим было приянто решение вычислить коэффициет K при K_G устремляющимся в бесконечность, т.е. в момент перехода магнетрона к сбалансированному типу. На рис. 5 приведены результаты такого моделирования. Если область моделирования расширить от 60 до 700 мм, то графики будут постепенно возрастать. В области радиусов мишени между 70 и 120 мм наблюдается скачкообразное изменение функции при всех значениях радиуса центрального магнита. Причем в случае Rc=14 мм появился дополнительный пик на радиусе мишени 80 мм.

Рис. 5. Результаты компьютерного моделирования коэффициента К при переходе магнетронной системы к сбалансированному типу

Более тщательное исследование было проведено при радиусе центрального магнита 13 мм (рис. 6). Выяснилось, что при определенном радиусе мишени, в данном случае 85 мм, происходит резкое падение коэффициента *К* и параллельно с ним ширины внешнего магнита.

Рис. 6. Результаты компьютерного моделирования коэффициента *К* при *K*_{*G*}, устремящемся в бесконечность, *R*_{*c*}=13мм.

Дальнейшее исследование проводилось на магнетроне типа МАС, все геометрические параметры были взяты с действующей магнетронной установки. В этом случае управление распределением B_{\perp} на оси устройства достигается за счет изменения тока соленоида (рис. 7).

Рис. 7. Результаты компьютерного моделирования МАС, *R*_c=40мм

Воздействие дополнительного поля соленоида привело к тому, что точка Z_0 находится в пределах между поверхностью мишени и высотой соленоида (рис. 8). Уменьшение подаваемого на соленоид напряжения до 5 В и моделирование при прежних параметрах геометрии показало, что магнетрон нельзя привести в состояние близкое к сбалансированному. Поэтому для магнетрона типа МАС соотношение (4) всегда выполняется.

Рис. 8. Результаты компьютерного моделирования магнетрона типа МАС с дополнительным соленоидом (1434 ампер-витков)

На рис. 9 представлены зависимости трех основных параметров, характеризующих степень несбалансированности, от l, полученные в результате моделирования магнетронной распылительной системы с дополнительным соленоидом. Напряжение на соленоиде составляло 30 В.

Рис. 9. Влияние изменения ширины внешнего магнита на параметры *K*, *K*_{*G*}, *A*_{*mag*} магнетронной системы с дополнительным соленоидом

Заключение

На основе анализа различных конфигураций магнетронных распылительных систем установлено, что отношение ион/атом имеет связь с компоновочными характеристиками и зависит от параметров несбалансированности магнетронов и пропорционально увеличивается с ростом K. Ключевым параметром в прикатодной области UBM является конфигурация магнитного поля. Осевая составляющая магнитного поля играет основную роль в создании эффекта несбалансированности и, как следствие, оказывает непосредственное влияние на параметры потоков заряженных частиц на подложку. Проведенный анализ результатов показывает, что параметр A_{mag} наилучшим образом характеризует степень несбалансированности магнетронной распылительной системы, так как физический смысл магнитного интеграла в этом случае определяет энергозатраты на транспортировку электронов из разрядного слоя. Для оценки степени несбалансированности оптимальным параметром представляется величина магнитного интеграла A_{mag} .

SIMULATION AND NUMERICAL RESEARCH PARAMETERS OF MAGNETRON SPUTTERING SYSTEMS

S.N. MELNIKOV, S.P. KUNDAS, I.V. SVADKOVSKY

Abstract

Introduced results of simulation a few types magnetron sputtering systems. Comparative analysis configuration of the magnetic field allow to determine parameters, that can be used for criterion of unbalance degree.

Литература

1. Gencoa Magnetron Sputtering Cathodes, Web address: http://www.gencoa.com/

2. Свадковский И.В., Йонно-плазменные методы формирования тонкопленочных покрытий: Монография / Под ред. А.П. Достанко. Минск, 2002. 242 с.

- 3. Данилин Б.С. Применение низкотемпературной плазмы для нанесения тонких пленок. М., 1989.
- 4. Svadkovski I.V., Golosov D.A., Zavatskiy S.M. // Vacuum. 2002. Vol. 68, № 4. P. 283–290.
- 5. Musil J., Kadlec S. // Vacuum. 1990. Vol. 40, № 5. P. 435–444.
- 6. Sproul W.D. // Vacuum. 1998. Vol. 51, № 4. P. 641–646.
- 7. Руководство пользователя программы ELCUT, адрес сайта программы http://www.tor.ru/elcut